On Multicolor Ramsey Number of Paths Versus Cycles
نویسندگان
چکیده
Let G1, G2, . . . , Gt be graphs. The multicolor Ramsey number R(G1, G2, . . . , Gt) is the smallest positive integer n such that if the edges of a complete graph Kn are partitioned into t disjoint color classes giving t graphs H1,H2, . . . ,Ht, then at least one Hi has a subgraph isomorphic to Gi. In this paper, we provide the exact value of R(Pn1 , Pn2 , . . . , Pnt , Ck) for certain values of ni and k. In addition, the exact values of R(P5, C4, Pk), R(P4, C4, Pk), R(P5, P5, Pk) and R(P5, P6, Pk) are given. Finally, we give a lower bound for R(P2n1 , P2n2 , . . . , P2nt) and we conjecture that this lower bound is the exact value of this number. Moreover, some evidence is given for this conjecture.
منابع مشابه
Multicolor Ramsey numbers for some paths and cycles
We give the multicolor Ramsey number for some graphs with a path or a cycle in the given sequence, generalizing a results of Faudree and Schelp [4], and Dzido, Kubale and Piwakowski [2, 3].
متن کاملMulticolor Ramsey Numbers for Paths and Cycles
For given graphs G1, G2, . . . , Gk, k ≥ 2, the multicolor Ramsey number R(G1, G2, . . . , Gk) is the smallest integer n such that if we arbitrarily color the edges of the complete graph on n vertices with k colors, then it is always a monochromatic copy of some Gi, for 1 ≤ i ≤ k. We give a lower bound for k-color Ramsey number R(Cm, Cm, . . . , Cm), where m ≥ 8 is even and Cm is the cycle on m...
متن کاملOn size multipartite Ramsey numbers for stars versus paths and cycles
Let Kl×t be a complete, balanced, multipartite graph consisting of l partite sets and t vertices in each partite set. For given two graphs G1 and G2, and integer j ≥ 2, the size multipartite Ramsey number mj(G1, G2) is the smallest integer t such that every factorization of the graph Kj×t := F1 ⊕ F2 satisfies the following condition: either F1 contains G1 or F2 contains G2. In 2007, Syafrizal e...
متن کاملOn Some Ramsey and Turan-Type Numbers for Paths and Cycles
For given graphs G1, G2, ..., Gk, where k ≥ 2, the multicolor Ramsey number R(G1, G2, ..., Gk) is the smallest integer n such that if we arbitrarily color the edges of the complete graph on n vertices with k colors, there is always a monochromatic copy of Gi colored with i, for some 1 ≤ i ≤ k. Let Pk (resp. Ck) be the path (resp. cycle) on k vertices. In the paper we show that R(P3, Ck, Ck) = R...
متن کاملNew Lower Bound for Multicolor Ramsey Numbers for Even Cycles
For given finite family of graphs G1, G2, . . . , Gk, k ≥ 2, the multicolor Ramsey number R(G1, G2, . . . , Gk) is the smallest integer n such that if we arbitrarily color the edges of the complete graph on n vertices with k colors then there is always a monochromatic copy of Gi colored with i, for some 1 ≤ i ≤ k. We give a lower bound for k−color Ramsey number R(Cm, Cm, . . . , Cm), where m ≥ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 18 شماره
صفحات -
تاریخ انتشار 2011